Basics

Header_Basics

BASICS is a series of insights from the project work conducted by Topmotors on efficient motor driven systems and provides an overview of the most important elements for successful energy efficiency improvement in an industrial or service company.

Topmotors BASICS No. 01
Save with system
Topmotors BASICS No. 01

Proper coordination of the individual components in one system with the necessary dimension for the process actually required are decisive in creating an efficient motor driven system: pressure, temperature, flow, etc. Many old motor driven systems that are oversized and have poorly coordinated components are still being used in industry and in large facilities. They consume an unnecessarily high amount of electric energy.

Topmotors BASICS No. 02
Energy savings in packages
Topmotors BASICS No. 02

Many motor systems can be improved with very low payback times.
The results of the cost benefit analysis of motor driven systems in a machine factory in Switzerland show that many big machines with around two years payback generate substantial electricity and cost savings.


 

Topmotors BASICS No. 03
Old Motor Driven Systems
Topmotors BASICS No. 03

Electric motor driven systems run much longer than their operating life expectancy of 10 to 20 years, according their output size. Their bearings are regularly greased and repaired and even their stator copper wiring is ventually rewound at considerable cost. But, even with careful maintenance, old motors can never reach the efficiency of modern IE3 Premium Efficiency motors.
 

Topmotors BASICS No. 04
Optimising through maintenance
Topmotors BASICS No. 04

The process of carrying out maintenance on motor driven systems does not begin when a motor fails or is shut down for a service. Instead, maintenance must be initiated long in advance. The best time to think about maintenance and replacement is while the motor driven system is still running smoothly.

Topmotors BASICS No. 05
VFDs: What are the benefits?
Variable frequency drives: What are the benefits?

Variable frequency drives (VFD) are used to continually and electronically regulate asynchronous motors to lower and higher torques, depending on the application. Modern standard motors can be operated in conjunction with a VFD without any problems. Older motors, on the other hand, are not always compatible with VFDs due to electric and mechanical reasons.

Topmotors BASICS No. 06
New motor-driven technologies
Topmotors BASICS No. 06

BASICS No. 06 deals with new motor-driven technologies that are currently being used in industry. It provides information on various motor systems such as asynchronous, permanent magnet and synchronous reluctance motors. In addition to typical efficiencies of the various technologies, advantages and disadvantages are also described.

Topmotors BASICS No. 07
Minimum requirements
Topmotors BASICS No. 07

In industry, where economy is everything, energy-related improvements are only implemented if they are worth it and the payback times are short. Much of the potential for improving energy efficiency is never recognised because energy seems to be unimportant, companies lack the relevant expertise and pay little attention to it. Minimum requirements have proved successful in many countries, i.e. from a certain point in time, inferior products (motors, pumps, fans, etc.) are no longer available on the market.

Topmotors BASICS No. 08
Compressed air systems
Topmotors BASICS No. 08

Compressed air is practical and reliable. Leaks in the network often get unnoticed and are not perceived as a problem. What is often overlooked is that compressed air is a very expensive energy source that should be handled carefully. Every cubic metre of air goes through a series of processes before it meets the quantity, pressure and quality required for the compressed air network. The use of waste heat from the compressor increases the total efficiency of the compressed air system.

Topmotors BASICS No. 09
Cooling systems
Topmotors BASICS No. 09

Cooling systems are an important element in many companies in Switzerland. Cooling capacity failure or decrease generally has an immediate effect on production, quality and storage – for manufacturing and chemical processes, food processing and logistics. At the same time, cold generation is an energy-intensive process with complex, expensive refrigeration networks and cooling units using sensitive substances (refrigerants).