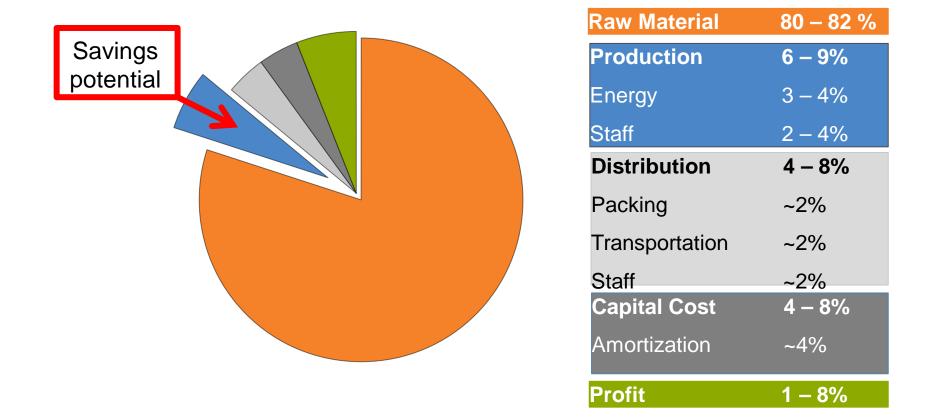


Energy Consulting.

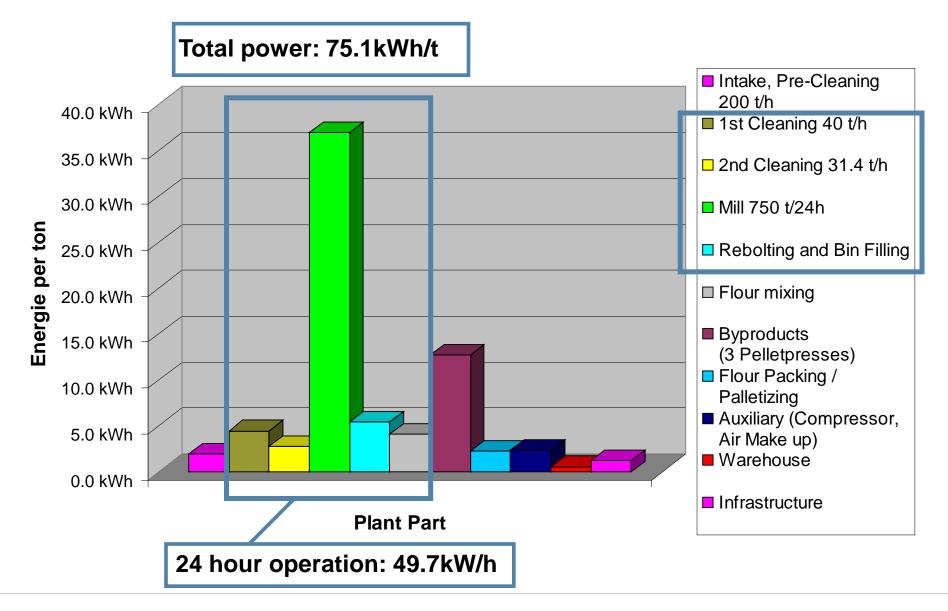
2016

Josef Brühwiler Bühler + Scherler

1	Potential in einer typischen Mühle
2	Optimierungen beim Engineering
3	Optimierungen an bestehenden Anlagen
4	Beispiele


1 Potential in einer typischen Mühle

- 2 Optimierungen beim Engineering
- 3 Optimierungen an bestehenden Anlagen


4 Beispiele

Evaluate possible savings.

Cost structure example of a European flour mill.

Energy Consumption

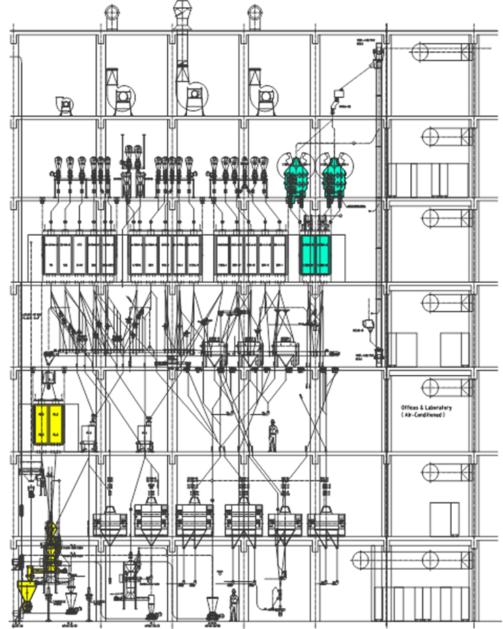
1 Potential in einer typischen Mühle

- 2 Optimierungen beim Engineering
- 3 Optimierungen an bestehenden Anlagen

4 Beispiele

Criteria of a modern mill building

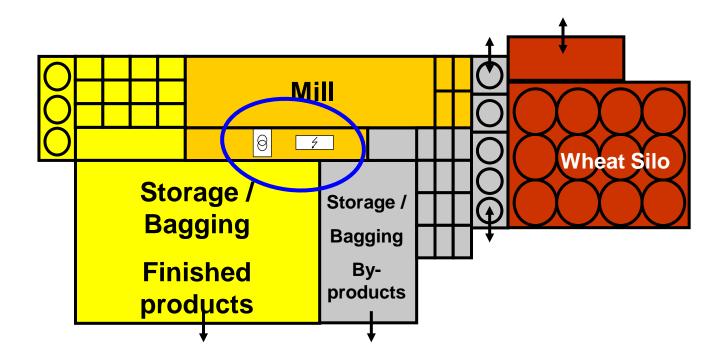
Optimum layout Short conveying distances



Plant aspects:

- optimized layout
 - less pneumatic lifts

less equipment


- Only high efficient motors
- Only high efficient aspiration systems
- only high efficient filters
- only high efficient air compressor system

Criteria of a modern mill building

Transformers

- Low tension distribution board / Power factor correction
 - to be installed as close as possible to the power users

Optimized machinery

- Development of new machines
- Development of new drives on machines
- Combination between drive and frequency convertor
- Air recycling system
- New plant layout

3	Optimierungen an bestehenden Anlagen
2	Optimierungen beim Engineering
1	Potential in einer typischen Mühle

4 Beispiele

Assessment on customer site (Energy consultant + head miller

- On site meeting with the maintenance personnel
- Evaluation / Measuring all drive with a capacity bigger than 7.5 kW
- Evaluation /Measuring of the pneumatic suction conveying system
- Check the pipe work / installation of the existing pneumatic conveying system
- Measuring the Aspiration System
- Information about other saving possibilities
- Optimize adjustment of the high pressure filters
- Evaluation power supply / Transformers / high tension switchgear)
- Evaluation of energy savings in infrastructure like lighting
- Air compressor units / Air Leakages
 - Final Meeting on site for further steps and recommendation

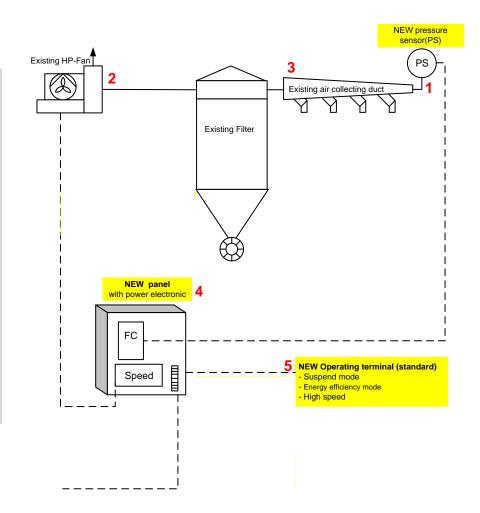
EnergySaving – RETROFIT

Energy efficiency package for mill pneumatic

Benefits

Reduced operating costs

as the control system of the high pressure fan responds to the present need


Increased productivity

thanks to the automatic adjustment to current production

Environmentally friendly and sustainable

production

in view of reduced CO2 emissions

EnergySaving – RETROFIT

Energy efficiency package for mill pneumatic

- Reduction of power consumption through adjustment of working point for the high pressure fan
- Manifold safety will be reduced to the minimum

Basic Characteristic Curves \rightarrow Fan with Converter.

Summary: simultaneous adjustment of valves and fan speed

Task: reduced velocity and pressure \rightarrow from operating point 2 to point 3

EnergySaving – RETROFIT

Energy efficiency package for mill pneumatic

The fan curve can be optimally adjusted to the required operating point

High pressure fan with frequency converter in training center school mill

Energy Saving – Blow line

A frequency converter can be useful in following cases:

- different products
- if you feed two different lines
- different tasks

Energy Consulting – Cost Optimization. Infrastructure

General power supply:

load study, load shedding, observe energy invoice

Power factor correction unit:

- reactive power costs
- consider the harmonic distortions

Power transformers:

low loss transformers

Improved lighting technologies means:

- only the newest and efficient lighting technology
- light is on where required (motion sensor)
- less maintenance costs. (long life bulbs)

Without monitoring tool no control over your savings?

Key Facts:

- all type of Energy can be displayed
- Benchmark between different plants
- automatically generated reports
- ISO 50001 certified
- Energy flow visible

1	Potential in einer typischen Mühle
2	Optimierungen beim Engineering

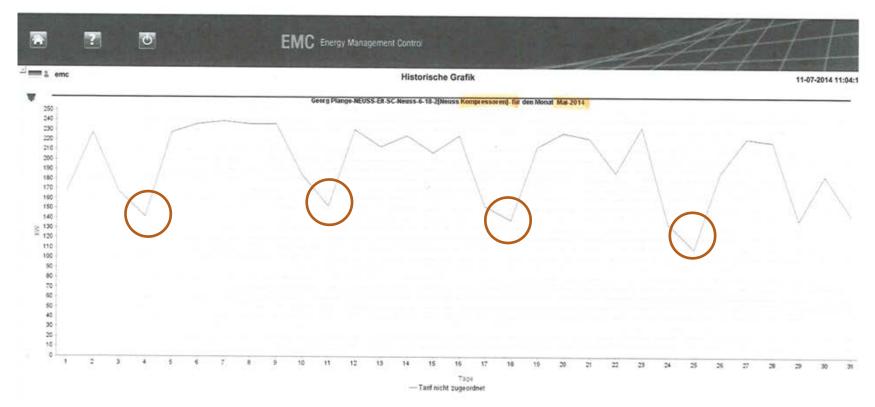
BUHLER + SCHERLER

3 Optimierungen an bestehenden Anlagen

4 Beispiele

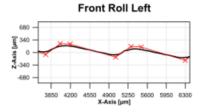
Energy Consulting Service. A success story: Grain Mill.

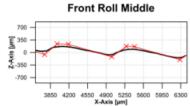
- Customer: in Spain (1050 t / 24 h)
- Customer's targets:
 - reduced energy costs
 - ROI < 3.5 years
 - environmentally friendly production
 - increase of production capacity
- Action: (pneumatic conveying systems, aspiration, electrical drives, leakages etc.
- Savings:
 - 560,000 kWh p. a. (8.5 mio. kWh/a)

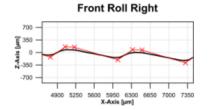

Energy Consulting Service. A success story: Feed Mill.

- Customer: in Germany (56 t / h)
- Customer's targets:
 - reduced energy costs
 - ROI < 3.0 years</p>
 - environmentally friendly production
- Actions: VFD loop controlled fans, heat recovery system, cooling system, improvements on the inlet part, etc.
- Savings:
 - 490,000 kWh p. a.

Air compressor


No production during the weekends


stand-by is still approx. 120kW


more than 120'000kWh loss /18'000€ per year

Solution: pressure reduction / splitting the system

General: Roll detect

Parameters	Front Roll - Left	Front Roll - Middle	Front Roll - Right	Mean	Unit
Corrugation Area Reduction:	17	21	18	18.6	%
Corrugation Height Reduction:	21	20	22	21.1	%
Gap Area Reduction:	23	32	32	28.8	%
Predicted Corrugation Type:	57	57	57		Type #
Wearout Status:	CRITICAL	CRITICAL	CRITICAL		Status

Vielen Dank für ihre Aufmerksamkeit

Josef Brühwiler Energy consulting Bühler + Scherler AG j.bruhwiler@buhler-scherler.com