Motoren auf dem Prüfstand

Antriebssysteme Messen - Analysieren, Interpretieren, Optimieren

Markus Thöni, Elektromotorenwerk Brienz AG, 09. Oktober 2015

AGENDA

- Kurzvorstellung EMWB
- Ziele von Motorenprüfungen
- Grundlagen Normen
 - DIN EN 60034-2-1; Edition 2.0; 2015
 - DIN EN 60034-30-1; Edition 1.0; 2015
- Messverfahren und zugehörige Messgeräte
- Prüflingsaufbau
- Messung und Messdaten
- Auswertung

KURZVORSTELLUNG EMWB

KURZVORSTELLUNG EMWB

ZIELE VON MOTORENPRÜFUNGEN

- Erfüllung der Normen / Kundenanforderungen
- Reproduzierbare Messungen mit einheitlichen Messverfahren und definierten Genauigkeiten
- Optimierung von Antrieben
- Überprüfung von Stempeldaten
- etc.

DIN EN 60034-2-1 Edition 2.0; 2015

Drehende elektrische Maschinen -

Teil 2-1: Standardverfahren zur Bestimmung

der Verluste und des Wirkungsgrades aus Prüfungen und des Wirkungsgrades aus Prüfunge

6.1.1 Prüfverfahren zur Wirkungsgradbestimmungen von Asynchronmaschinen

Geringe Messunsicherheit

Verfahren	Anwendungsbereich
Summation der Einzelverluste: Bestimmung der Restverluste	Mehrphasenmaschinen bis zu 2MW Bemessungsleistung

6.1.3 Methode 2-1-1B:

Summation der Einzelverluste mit Ermittlung der lastabhängigen Zusatzverluste aus den Restverlusten

- Eisenverluste
- Lüftungs- und Reibungsverluste
- Ständer- und Läuferkupferverluste
- Lastabhängige Zusatzverluste

Testablauf:

- 1. Widerstandsmessung R_{kalt}
- 2. Prüfung mit Bemessungslast
- 3. Prüfung mit Belastungskurve
- 4. Leerlaufprüfung

Annex D: Test Report

Drehmoment

T

Nm

Hersteller-L	.ogo				Bernessungsste Bernessungsdre Bernessungsfre Benessungsfre Phasenzahl IEC 60034-30-1	om dizatil quenz Bernessung)	A			Typ. Seriel Limits Design	nnummer.			
Prüfdatum:		Protokollnu	mmer:		Anfangsbedingu Gemessener Wide Wicklungstempera Umgebungstemper	ngen rstand R	Ω °C	е		6.1.3,2.1	toffklasse IEC mgebungstem Prüfung mit ener Widersta	peratur	°(
Motordaten					6.1.3.2.3 Prüfung m Bemessungsausgan Drehmoment Aufgenommene Leist	it Belastungs	°C kurve	%	Gemessene	Umgebun	ener Widersta stemperatur gstemperatur d vor Prüfung	θ_N	Slast °C °C	
Bemessungsleistung	kW			Ine	rehzahl	ung	<i>P</i> ,	Nm W	125 %	115 %	100 %	75 %	Ω 50 %	
Bemessungsspannung	V			TV	lemmenspannung equenz		n U	A min:					30%	25 %
Bemessungsstrom	Α				cklungstemperatur	θ		Hz °C						
3emessungsdrehzahl	min-1				3.2.4 Leerlaufprüfur nessungsspannung gen. Leistung	A.		G	emessener V	/iderstand na	ich Paul			
Bemessungsfrequenz	Hz			otra	ngstrom 4	70 110 W A	%	00 %	95 %	derstand vor	Prüfung	R	Ω	
Phasenzahl	-			Freq. Wicki		V Iz	+		\Rightarrow		- N	50 %	40 %	30 %
EC 60034-30-1 (Bemessung)	IE-Code			6.1.3.3	*					=		=	\Rightarrow	\exists
				Abgege	Wirkungsgradbestin ngsausgangsleistung, kon Dene Leistung, korr.	nmung		Joeine	ssener Wider	stand nach F	Prüfung			
Anfangsbedingungen				Aufgeno	nmene Laist	D	W P.E.	125	% 115	% 100	% / 35	_		
Gemessener Widerstand R _i	Ω			Reibung (nd Lon	P_{t_0}	W				% 75	50	% 25	5 %
Nicklungstemperatur θ ₀	°C		<u> </u>		usto (control lusto)	P _{tat.}	W			+		+		\dashv
Jmgebungstemperatur θ_a	°C		15	eistungsla Virkungsg	C. Commence	P _{LB}	W W %						+	
						η	%							7
3.1.3.2.3 Prüfung mit Belastun	igskurve		Gemessene	Proff:]
Bemessungsausgangsleistung		%	125 %		115 %	10	0 %	۱ ′	reigegeben:					25 %

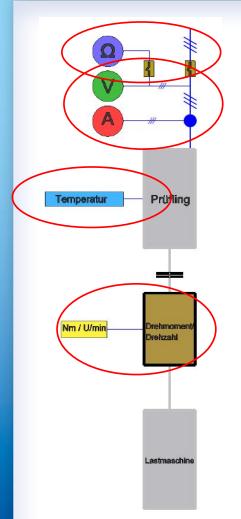
7. Prüfverfahren zur Wirkungsgradbestimmung von Synchronmaschinen – Permanentmagnet-Erregung

Geringe Messunsicherheit

Verfahren	Anwendungsbereich
Direkte Messung der aufgenommenen und der abgegebenen Leistung	Alle Bemessungsleistungen

DIN EN 60034-30-1 Edition 1.0; 2014

Drehende elektrische Maschinen -Teil 30-1: Wirkungsgrad- Klassifizierung von netzgespeisten Drehstrommotoren

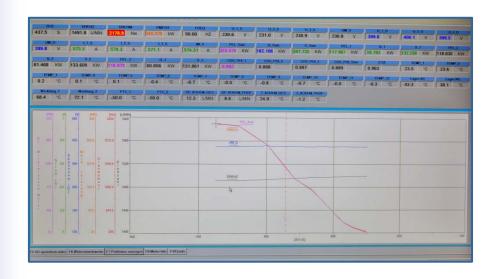


- Numerische Definition der Wirkungsgradklassen für 50Hz und 60Hz in IE1, IE2, IE3, IE4
- Formeln und Interpolationskoeffizienten zur Wirkungsgradberechnung
- Absichtserklärung der Wirkungsgradklasse IE5 für die nächste Ausgabe der Norm

MESSVERFAHREN UND ZUGEHÖRIGE MESSGERÄTE

PRÜFLINGSAUFBAU

Temperaturfühler


Anschluss / EMV

Ausrichten Prüfling

MESSUNG UND MESSDATEN

AUSWERTUNG DER ROHMESSDATEN

Auswertung gemäss IEC

Detaillierte Auswertung inkl. Herleitung und Grafiken

FRAGEN?

www.emwb.ch

m.thoeni@emwb.ch